Image Segmentation Using Automatic Seeded Region Growing and Instance-Based Learning

نویسندگان

  • Octavio Gómez
  • Jesus A. Gonzalez
  • Eduardo F. Morales
چکیده

Segmentation through seeded region growing is widely used because it is fast, robust and free of tuning parameters. However, the seeded region growing algorithm requires an automatic seed generator, and has problems to label unconnected pixels (unconnected pixel problem). This paper introduces a new automatic seeded region growing algorithm called ASRG-IB1 that performs the segmentation of color (RGB) and multispectral images. The seeds are automatically generated via histogram analysis; the histogram of each band is analyzed to obtain intervals of representative pixel values. An image pixel is considered seed if its gray values for each band fall in some representative interval. After that, our new seeded region growing algorithm is applied to segment the image. This algorithm uses instance-based learning as distance criteria. Finally, according to the user needs, the regions are merged using ownership tables. The algorithm was tested on several leukemia medical images showing good results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Automatic Seeded Region Growing for 2D Biomedical Image Segmentation

In this paper, an automatic seeded region growing algorithm is proposed for cellular image segmentation. First, the regions of interest (ROIs) extracted from the preprocessed image. Second, the initial seeds are automatically selected based on ROIs extracted from the image. Third, the most reprehensive seeds are selected using a machine learning algorithm. Finally, the cellular image is segment...

متن کامل

Seeded region growing algorithm is an automated segmentation method in which the region of interest begins as a single pixel and grows based on surrounding pixels with similar

For automatic breast cancer detection, mass segmentation is and continues to be a major challenge. The segmentation objective is to separate the mass from the rest of the breast by trying to delimit its borders correctly. Seeded Region Growing technique is very attractive for medical image segmentation by involving the high-level knowledge of image components in the seed selection procedure. Th...

متن کامل

A Survey on Color Image Segmentation by Automatic Seeded Region Growing

Color image segmentation is the process of segmenting the image into multiple subsets. It is an important step towards pattern detection and recognition. A seeded region growing color image segmentation is used to segment the image into homogenous regions. In this paper, we present an extensive survey on research work carried out in the area of color image segmentation by automatic seeded regio...

متن کامل

Automatic Color Image Segmentation Using a Square Elemental Region-Based Seeded Region Growing and Merging Method

This paper presents an efficient automatic color image segmentation method using a seeded region growing and merging method based on square elemental regions. Our segmentation method consists of the three steps: generating seed regions, merging the regions, and applying a pixel-wise boundary determination algorithm to the resultant polygonal regions. The major features of our method are as foll...

متن کامل

Comparative study of automatic seed selection methods for medical image segmentation by region growing technique

Seeded Region Growing technique is very attractive for medical image segmentation by involving the high-level knowledge of image components in the seed selection procedure. However, the Seeded Region Growing technique suffers from the problems of automatic seed generation. A seed point is the starting point for region growing and it’s choose is very crucial since the overall success of the segm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007